Welcome To Numbertheory Web Site
mathpic
2569

NextCard Internet Visa



Site Owner: Li Ke Xiong
Email: likexiong@126.com
ALL RIGHTS RESERVED


back to home

The " Primary Proof " For Fermat Last Theorem

A. At the beginning, we think it is necessary to repeat our Definitions in the paper of " The Development of the Concept of Congruence "
Definition I (A).pp.pic1 mod pp.pic2. integer a, b, n and s. pp.pic3
                  (B). Never can "p" be as the denominator divisor of (and in) any finite expression,
                       otherwise meaningless.  (In any finite expressions, when "p" is a denominator divisor,
                       1/p is 1/0, hence the finite expression is meaningless, mod pp.pic2.
                  We should say, if A is a basic fact, B should be true, too. A and B can not be
                   separated.

B. Now, suppose pp.pic4can be true with same p. pp.pic5
    We have pp.pic6pp.pic7pp.pic8,pp.pic5
    make the function f(x)=pp.pic9

   the above two expressions are pp.pic6pp.pic10pp.pic8, p>3.

C. pp.pic11

D. Because pp.pic10pp.pic8(p>3)
pp.pic12

E. Let us see the above (      )pp.pic13, if (      )pp.pic13pp.pic14pp.pic8 p>3, surely (       )pp.pic13pp.pic14 mod p.
    if suppose (       )pp.pic13not pp.pic14 mod p, (        )pp.pic13not pp.pic14pp.pic8 without any doubt.
    a. So let us suppose (      )pp.pic13pp.pic14 mod p, we have (         )pp.pic13pp.pic18pp.pic15pp.pic13pp.pic14,
       please note pp.pic16when x is an integer, pp.pic17 mod p.
      thus (      )pp.pic13pp.pic18pp.pic19pp.pic13= -2/3(27-8)=-2/3X19pp.pic14 mod p (p>3)
     The only possibility for (        )pp.pic13pp.pic14pp.pic8 (p>3) is p=19.
    b.Let us suppose (         )pp.pic13pp.pic14pp.pic8 (p>3)
      (        )pp.pic13=pp.pic20
      due to having supposed pp.pic6pp.pic21pp.pic8
     so (         )pp.pic13pp.pic183+9-3+(p-2)/(p+2)X27-[2+8/3-2+(p-2)/(p+2)X8]
                           =19[1/3+(p-2)/(p+2)]pp.pic14pp.pic8 (p>3)
         1. If p=19, we get 1/3+(19-2)/(19+2)pp.pic14 mod 19, we get 24pp.pic14,
pp.pic22 or 1/3+(19-2)/(19+2)pp.pic181/3+(-2)/2=1/3-1=(-2)/3pp.pic14mod 19.
            This is a contradiction.
        2. If pp.pic23, we get 1/3+(p-2)/(p+2)pp.pic14pp.pic8, p>3 surely 1/3+(p-2)/(p+2)pp.pic14,
           that is 1/3-1pp.pic14 mod p [Please note: (p-2)/(p+2)pp.pic18 -1 ,pod p], so -2/3pp.pic14 mod p, p>3
          -2pp.pic14 mod p, obviously this is also a contradiction.

F. Let us see pp.pic24,
    a. Let us suppose pp.pic24pp.pic14 mod p pp.pic25 k,m and s are integers pp.pic261
       spp.pic261, pp.pic27. We know pp.pic28 should be a rational number, otherwise can not match
       f(3)-f(2) is rational.  So we can write
pp.pic29
    b. Needless to say pp.pic24pp.pic14pp.pic8pp.pic28 is also a meaningless one.

G. From the above E and F, we can see f(3)-f(2) never pp.pic14pp.pic8 . The conclusion is: there is
    no such "p" to make pp.pic6pp.pic21pp.pic8, p>3 to be true together at the same time.



back to home

NextCard Internet Visa

Site Owner: Li Ke Xiong
Email: likexiong@126.com
ALL RIGHTS RESERVED